Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Transpl Immunol ; 79: 101864, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2324268

ABSTRACT

BACKGROUND: Kidney transplant recipients (KTRs) who become infected with SARS-CoV-2 are at greater risk of serious illness and death than the general population. To date, the efficacy and safety of the fourth dose of the COVID-19 vaccine in KTRs have not been systematically discussed. METHODS: This systematic review and meta-analysis included articles from PubMed, Embase, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Wanfang Med Online published before May 15, 2022. Studies evaluating the efficacy and safety of a fourth dose of the COVID-19 vaccine in kidney transplant recipients were selected. RESULTS: Nine studies were included in the meta-analysis, with a total of 727 KTRs. The overall pooled seropositivity rate after the fourth COVID-19 vaccine was 60% (95% CI, 49%-71%, I2 = 87.83%, p > 0.01). The pooled proportion of KTRs seronegative after the third dose that transitioned to seropositivity after the fourth dose was 30% (95% CI, 15%-48%, I2 = 94.98%, p < 0.01). CONCLUSIONS: The fourth dose of the COVID-19 vaccine was well tolerated in KTRs with no serious adverse effects. Some KTRs showed a reduced response even after receiving the fourth vaccine dose. Overall, the fourth vaccine dose effectively improved seropositivity in KTRs, as recommended by the World Health Organization for the general population.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , China , Transplant Recipients
2.
Angew Chem Int Ed Engl ; : e202304298, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2322380

ABSTRACT

Mass pathogen screening is critical to preventing the outbreaks and spread of infectious diseases. The large-scale epidemic of COVID-19 and the rapid mutation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have put forward new requirements for virus detection and identification techniques. Here, we report a CRISPR-based Amplification-free Viral RNA Electrical Detection platform (CAVRED) for the rapid detection and identification of SARS-CoV-2 variants. A series of CRISPR RNA assays were designed to amplify the CRISPR-Cas system's ability to discriminate between mutant and wild RNA genomes with a single-nucleotide difference. The identified viral RNA information was converted into readable electrical signals through field-effect transistor biosensors for the achievement of highly sensitive detection of single-base mutations. CAVRED can detect the SARS-CoV-2 virus genome as low as 1 cp µL-1 within 20 mins without amplification, and this value is comparable to the detection limit of real-time quantitative polymerase chain reaction. Based on the excellent RNA mutation detection ability, an 8-in-1 CAVRED array was constructed and realized the rapid identification of 40 simulated throat swab samples of SARS-CoV-2 variants with a 95.0 % accuracy. The advantages of accuracy, sensitivity, and fast speed of CAVRED promise its application in rapid and large-scale epidemic screening.

3.
ACS Sens ; 8(5): 2096-2104, 2023 05 26.
Article in English | MEDLINE | ID: covidwho-2327385

ABSTRACT

The large-scale pandemic and fast evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have triggered an urgent need for an efficient and sensitive on-site nucleic acid testing method with single-nucleotide polymorphism (SNP) identification capability. Here, we report a multiplexed electrical detection assay based on a paperclip-shaped nucleic acid probe (PNprobe) functionalized field-effect transistor (FET) biosensor for highly sensitive and specific detection and discrimination of SARS-CoV-2 variants. The three-stem structure of the PNprobe significantly amplifies the thermodynamic stability difference between variant RNAs that differ in a single-nucleotide mutation. With the assistance of combinatorial FET detection channels, the assay realizes simultaneously the detection and identification of key mutations of seven SARS-CoV-2 variants, including nucleotide substitutions and deletions at single-nucleotide resolution within 15 min. For 70 simulated throat swab samples, the multiplexed electrical detection assay shows an identification accuracy of 97.1% for the discrimination of SARS-CoV-2 variants. Our designed multiplexed electrical detection assay with SNP identification capability provides an efficient tool to achieve scalable pandemic screening.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Nucleic Acid Probes , Nucleotides
4.
Museum Management and Curatorship ; 38(2):175-194, 2023.
Article in English | ProQuest Central | ID: covidwho-2301674

ABSTRACT

Amid the Covid-19 pandemic, how to attract back visitors has been a major problem for museums across the world. Among diverse museum activities, human-guided tours remain under-studied to date. A post-hoc case analysis on Xuhui Art Museum provided empirical evidence demonstrating the potential power of guided tours. Quantitative methods in content analysis and semantic network analysis were employed to identify general features of visitor comments from both visitor books and social media. An in-depth interview was also conducted with the Chief Curator. Results reveal that the work of ‘jiangjie', or tour guiding, is greatly appreciated and plays a vital role in improving visitor experience and satisfaction. This study calls for re-evaluation of the functions, potential and effects of tour guiding, and a renewal of live tours for better on-site experience in a post COVID-19 period.

5.
Canadian Journal of Agricultural Economics ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2281126

ABSTRACT

While the transmission of virus SARS‐CoV‐2 via food is rare, some Chinese food retailers are considering a Covid‐19‐tested food label. However, how consumers may support such a label is unknown. We quantify Chinese consumers' willingness to pay (WTP) for food carrying a Covid‐19‐tested label using an online choice experiment. We find that the WTPs for such a label are always positive for all food products considered. The amount of WTP depends on the entities authenticating the labels, country of origin of the food, and consumers' socio‐demographic status. Contrary to expectation, the knowledge on Covid‐19 does not affect consumer preferences for the Covid‐19‐tested food labels. Our benefit and cost analysis suggests a possible large benefit of creating and administering a Covid‐19‐tested food label. This study provides insights for policymakers, global food manufacturers, and retailers to create marketing strategies to alleviate consumer food safety concerns associated with Covid‐19. [ABSTRACT FROM AUTHOR] Copyright of Canadian Journal of Agricultural Economics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

6.
Comput Struct Biotechnol J ; 19: 1694-1700, 2021.
Article in English | MEDLINE | ID: covidwho-2254505

ABSTRACT

BACKGROUND: To investigate and select the useful prognostic parameters to develop and validate a model to predict the mortality risk for severely and critically ill patients with the coronavirus disease 2019 (COVID-19). METHODS: We established a retrospective cohort of patients with laboratory-confirmed COVID-19 (≥18 years old) from two tertiary hospitals: the People's Hospital of Wuhan University and Leishenshan Hospital between February 16, 2020, and April 14, 2020. The diagnosis of the cases was confirmed according to the WHO interim guidance. The data of consecutive severely and critically ill patients with COVID-19 admitted to these hospitals were analyzed. A total of 566 patients from the People's Hospital of Wuhan University were included in the training cohort and 436 patients from Leishenshan Hospital were included in the validation cohort. The least absolute shrinkage and selection operator (LASSO) and multivariable logistic regression were used to select the variables and build the mortality risk prediction model. RESULTS: The prediction model was presented as a nomograph and developed based on identified predictors, including age, chronic lung disease, C-reactive protein (CRP), D-dimer levels, neutrophil-to-lymphocyte ratio (NLR), creatinine, and total bilirubin. In the training cohort, the model displayed good discrimination with an AUC of 0.912 [95% confidence interval (CI): 0.884-0.940] and good calibration (intercept = 0; slope = 1). In the validation cohort, the model had an AUC of 0.922 [95% confidence interval (CI): 0.891-0.953] and a good calibration (intercept = 0.056; slope = 1.161). The decision curve analysis (DCA) demonstrated that the nomogram was clinically useful. CONCLUSION: A risk score for severely and critically ill COVID-19 patients' mortality was developed and externally validated. This model can help clinicians to identify individual patients at a high mortality risk.

7.
Elife ; 122023 03 16.
Article in English | MEDLINE | ID: covidwho-2288502

ABSTRACT

Background: Although inactivated COVID-19 vaccines are proven to be safe and effective in the general population, the dynamic response and duration of antibodies after vaccination in the real world should be further assessed. Methods: We enrolled 1067 volunteers who had been vaccinated with one or two doses of CoronaVac in Zhejiang Province, China. Another 90 healthy adults without previous vaccinations were recruited and vaccinated with three doses of CoronaVac, 28 days and 6 months apart. Serum samples were collected from multiple timepoints and analyzed for specific IgM/IgG and neutralizing antibodies (NAbs) for immunogenicity evaluation. Antibody responses to the Delta and Omicron variants were measured by pseudovirus-based neutralization tests. Results: Our results revealed that binding antibody IgM peaked 14-28 days after one dose of CoronaVac, while IgG and NAbs peaked approximately 1 month after the second dose then declined slightly over time. Antibody responses had waned by month 6 after vaccination and became undetectable in the majority of individuals at 12 months. Levels of NAbs to live SARS-CoV-2 were correlated with anti-SARS-CoV-2 IgG and NAbs to pseudovirus, but not IgM. Homologous booster around 6 months after primary vaccination activated anamnestic immunity and raised NAbs 25.5-fold. The neutralized fraction subsequently rose to 36.0% for Delta (p=0.03) and 4.3% for Omicron (p=0.004), and the response rate for Omicron rose from 7.9% (7/89)-17.8% (16/90). Conclusions: Two doses of CoronaVac vaccine resulted in limited protection over a short duration. The inactivated vaccine booster can reverse the decrease of antibody levels to prime strain, but it does not elicit potent neutralization against Omicron; therefore, the optimization of booster procedures is vital. Funding: Key Research and Development Program of Zhejiang Province; Key Program of Health Commission of Zhejiang Province/ Science Foundation of National Health Commission; Major Program of Zhejiang Municipal Natural Science Foundation; Explorer Program of Zhejiang Municipal Natural Science Foundation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Cohort Studies , Cross-Sectional Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral , China
8.
Biosensors (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2246528

ABSTRACT

Infectious pathogens cause severe threats to public health due to their frightening infectivity and lethal capacity. Rapid and accurate detection of pathogens is of great significance for preventing their infection. Gold nanoparticles have drawn considerable attention in colorimetric biosensing during the past decades due to their unique physicochemical properties. Colorimetric diagnosis platforms based on functionalized AuNPs are emerging as a promising pathogen-analysis technique with the merits of high sensitivity, low-cost, and easy operation. This review summarizes the recent development in this field. We first introduce the significance of detecting pathogens and the characteristics of gold nanoparticles. Four types of colorimetric strategies, including the application of indirect target-mediated aggregation, chromogenic substrate-mediated catalytic activity, point-of-care testing (POCT) devices, and machine learning-assisted colorimetric sensor arrays, are systematically introduced. In particular, three biomolecule-functionalized AuNP-based colorimetric sensors are described in detail. Finally, we conclude by presenting our subjective views on the present challenges and some appropriate suggestions for future research directions of colorimetric sensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Biosensing Techniques/methods
9.
Biosens Bioelectron ; 219: 114783, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2244013

ABSTRACT

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

10.
Soft comput ; 27(5): 2251-2268, 2023.
Article in English | MEDLINE | ID: covidwho-2228772

ABSTRACT

In recent years, the new type of coronary pneumonia (COVID-19) has become a highly contagious disease worldwide, posing a serious threat to the public health. This paper is based on the SEIR model of the new coronavirus pneumonia, considering the impact of cold chain input and re-positive on the spread of the virus in the COVID-19. In the process of model design, the food cold chain and re-positive are used as parameters, and its stability is analyzed and simulated. The experimental results show that taking into account the cold chain input and re-positive can effectively simulate the spread of the epidemic. The research results have important research value and practical significance for the prevention and control of the COVID-19 and the prediction of important time nodes.

11.
Vet Sci ; 10(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2237122

ABSTRACT

Respiratory tract and intestinal diseases are common threats to feline health. Coinfection with multiple pathogens is not rare among clinical infectious cases. Rapid diagnosis of these coinfections is of great significance for timely and effective clinical treatment. In this study, two novel multiplex polymerase chain reactions (mPCRs) were established for simultaneous detection of four pathogens associated with the feline intestinal tract (feline coronavirus (FCoV), feline astrovirus (FeAstV), feline panleukopenia virus (FPV) and feline kobuvirus (FeKoV)) and five pathogens associated with the respiratory tract (feline calicivirus (FCV), feline herpesvirus 1 (FHV-1), feline leukemia virus (FeLV), Chlamydia felis (C. felis) and influenza A virus (IAV)). The results of sensitivity analysis revealed that the detection limits for FeKoV, FPV, FeAstV, FCoV, IAV, C. felis, FeLV, FHV-1 and FCV were 103, 104, 103, 103, 103, 104, 104, 105 and 105 copies/µL, respectively. Moreover, the specificity of the two mPCRs was high. When the two mPCRs were applied to clinical samples, the assay worked well. In conclusion, we established two mPCR methods that provide an excellent tool for the diagnosis and monitoring of pathogens associated with the feline respiratory and intestinal tracts.

12.
Soft Computing ; : 1-18, 2023.
Article in English | EuropePMC | ID: covidwho-2207467

ABSTRACT

In recent years, the new type of coronary pneumonia (COVID-19) has become a highly contagious disease worldwide, posing a serious threat to the public health. This paper is based on the SEIR model of the new coronavirus pneumonia, considering the impact of cold chain input and re-positive on the spread of the virus in the COVID-19. In the process of model design, the food cold chain and re-positive are used as parameters, and its stability is analyzed and simulated. The experimental results show that taking into account the cold chain input and re-positive can effectively simulate the spread of the epidemic. The research results have important research value and practical significance for the prevention and control of the COVID-19 and the prediction of important time nodes.

13.
Nat Commun ; 13(1): 7957, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2185833

ABSTRACT

As SARS-CoV-2 Omicron and other variants of concern (VOCs) continue spreading worldwide, development of antibodies and vaccines to confer broad and protective activity is a global priority. Here, we report on the identification of a special group of nanobodies from immunized alpaca with potency against diverse VOCs including Omicron subvariants BA.1, BA.2 and BA.4/5, SARS-CoV-1, and major sarbecoviruses. Crystal structure analysis of one representative nanobody, 3-2A2-4, discovers a highly conserved epitope located between the cryptic and the outer face of the receptor binding domain (RBD), distinctive from the receptor ACE2 binding site. Cryo-EM and biochemical evaluation reveal that 3-2A2-4 interferes structural alteration of RBD required for ACE2 binding. Passive delivery of 3-2A2-4 protects K18-hACE2 mice from infection of authentic SARS-CoV-2 Delta and Omicron. Identification of these unique nanobodies will inform the development of next generation antibody therapies and design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , Camelids, New World , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus , Antibodies, Viral
14.
Zhongguo Yaolixue yu Dulixue Zazhi = Chinese Journal of Pharmacology and Toxicology ; 36(8):561, 2022.
Article in English | ProQuest Central | ID: covidwho-2167921

ABSTRACT

Messenger RNA(mRNA) vaccine, with antigen-encoded mRNA packaged in delivery vehicles, performs its functions via antigen translation and specific immune response. mRNA vaccines have proven their protective effects and safety in the ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). The World Health Organization issued guidelines specifically for prophylactic mRNA vaccines in 2021, which provide important guidance for non-clinical research on mRNA vaccines. Furthermore, some unusual adverse reactions, such as cerebrovascular disease, embolic stroke, transient cerebral ischemia, deep vein thrombosis, myocarditis(pericarditis) and allergic reactions, have been also found in clinical trials and applications of mRNA vaccines, which deserves attention in non-clinical studies.

15.
Front Immunol ; 13: 1017590, 2022.
Article in English | MEDLINE | ID: covidwho-2142027

ABSTRACT

Background: In response to SARS-CoV-2 mutations and waning antibody levels after two-dose inactivated vaccines, we assessed whether a third dose of recombinant protein subunit vaccine (ZF2001) boosts immune responses. Methods: An open-label single-center non-random trial was conducted on people aged 18 years and above at five sites in China. All participants received a two-dose inactivated vaccine (CoronaVac) as their prime doses within 3-9 months of the trial. Primary outcomes were safety and immunogenicity, primarily the geometric mean titers (GMTs) of neutralizing antibodies to live wildtype SARS-CoV-2. Results: A total of 480 participants (median age, 51; range 21-84 years) previously vaccinated with two-dose CoronaVac received a third booster dose of ZF2001 3-4, 5-6, or 7-9-months later. The overall incidence of adverse reactions within 30 days after vaccination was 5.83% (28/480). No serious adverse reactions were reported after the third dose of ZF2001. GMTs in the 3-4-, 5-6-, and 7-9-month groups before vaccination were 3.96, 4.60, and 3.78, respectively. On Day 14, GMTs increased to 33.06, 47.51, and 44.12, respectively. After the booster, GMTs showed no significant difference among the three prime-boost interval groups (all P>0.05). Additionally, GMTs in older adults were lower than those in younger adults on Day 14 for the three groups (P=0.0005, P<0.0001, and P<0.0001). Conclusion: Heterologous boosting with ZF2001 was safe and immunogenic, and prime-boost intervals did not affect the immune response. The immune response was weaker in older than younger adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Humans , Middle Aged , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Protein Subunits , SARS-CoV-2 , Vaccines, Inactivated/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Synthetic/adverse effects , Young Adult , Adult , Aged, 80 and over
16.
Biosensors & bioelectronics ; 2022.
Article in English | EuropePMC | ID: covidwho-2046381

ABSTRACT

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

17.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2037190

ABSTRACT

During the COVID-19 pandemic, the botanical product market saw a consumer interest increase in immune health supplements. While data are currently insufficient to support public health guidance for using foods and dietary supplements to prevent or treat COVID-19 and other immune disorders, consumer surveys indicate that immune support is the second-most cited reason for supplement use in the United States. Meanwhile, consumers showed increased attention to dietary supplement ingredient labels, especially concerning authenticity and ingredient claims. Top-selling botanical ingredients such as elderberry, turmeric, and functional mushrooms have been increasingly marketed toward consumers to promote immune health, but these popular products succumb to adulteration with inaccurate labeling due to the intentional or unintentional addition of lower grade ingredients, non-target plants, and synthetic compounds, partially due to pandemic-related supply chain issues. This review highlights the regulatory requirements and recommendations for analytical approaches, including chromatography, spectroscopy, and DNA approaches for ingredient claim verification. Demonstrating elderberry, turmeric, and functional mushrooms as examples, this review aims to provide industrial professionals and scientists an overview of current United States regulations, testing approaches, and trends for label compliance verification to ensure the safety of botanical products marketed for "immune health."

18.
Experimental and Therapeutic Medicine ; 24(3), 2022.
Article in English | EuropePMC | ID: covidwho-1990179

ABSTRACT

In December 2019, there was an outbreak of pneumonia of unknown causes in Wuhan, China. The etiological pathogen was identified to be a novel coronavirus, named severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The number of infected patients has markedly increased since the 2019 outbreak and COVID-19 has also proven to be highly contagious. In particular, the elderly are among the group of patients who are the most susceptible to succumbing to COVID-19 within the general population. Cross-infection in the hospital is one important route of SARS-CoV-2 transmission, where elderly patients are more susceptible to nosocomial infections due to reduced immunity. Therefore, the present study was conducted to search for ways to improve the medical management workflow in geriatric departments to ultimately reduce the risk of nosocomial infection in elderly inpatients. The present observational retrospective cohort study analysed elderly patients who were hospitalised in the Geriatric Department of the First Affiliated Hospital with Nanjing Medical University (Nanjing, China). A total of 4,066 elderly patients, who were admitted between January and March in 2019 and 2020 and then hospitalised for >48 h were selected. Among them, 3,073 (75.58%) patients hospitalised from January 2019 to March 2019 were allocated into the non-intervention group, whereas the remaining 933 (24.42%) patients hospitalised from January 2020 to March 2020 after the COVID-19 outbreak were allocated into the intervention group. Following multivariate logistic regression analysis, the risk of nosocomial infections was found to be lower in the intervention group compared with that in the non-intervention group. After age stratification and adjustment for sex, chronic disease, presence of malignant tumour and trauma, both inverse probability treatment weighting and standardised mortality ratio revealed a lower risk of nosocomial infections in the intervention group compared with that in the non-intervention group. To rule out interference caused by changes in the community floating population and social environment during this 1-year study, 93 long-stay patients in stable condition were selected as a subgroup based on 4,066 patients. The so-called floating population refers to patients who have been in hospital for <2 years. Patients aged ≥65 years were included in the geriatrics program. The incidence of nosocomial infections during the epidemic prevention and control period (24 January 2020 to 24 March 2020) and the previous period of hospitalisation (24 January 2019 to 24 March 2019) was also analysed. In the subgroup analysis, a multivariate analysis was also performed on 93 elderly patients who experienced long-term hospitalisation. The risk of nosocomial and pulmonary infections was found to be lower in the intervention group compared with that in the non-intervention group. During the pandemic, the geriatric department took active preventative measures. However, whether these measures can be normalised to reduce the risk of nosocomial infections among elderly inpatients remain unclear. In addition, the present study found that the use of an indwelling gastric tube is an independent risk factor of nosocomial pulmonary infection in elderly inpatients. However, nutritional interventions are indispensable for the long-term wellbeing of patients, especially for those with dysphagia in whom an indwelling gastric tube is the most viable method of providing enteral nutrition. To conclude, the present retrospective analysis of the selected cases showed that enacting preventative and control measures resulted in the effective control of the incidence of nosocomial infections.

19.
Exp Ther Med ; 24(3): 562, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1979466

ABSTRACT

In December 2019, there was an outbreak of pneumonia of unknown causes in Wuhan, China. The etiological pathogen was identified to be a novel coronavirus, named severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). The number of infected patients has markedly increased since the 2019 outbreak and COVID-19 has also proven to be highly contagious. In particular, the elderly are among the group of patients who are the most susceptible to succumbing to COVID-19 within the general population. Cross-infection in the hospital is one important route of SARS-CoV-2 transmission, where elderly patients are more susceptible to nosocomial infections due to reduced immunity. Therefore, the present study was conducted to search for ways to improve the medical management workflow in geriatric departments to ultimately reduce the risk of nosocomial infection in elderly inpatients. The present observational retrospective cohort study analysed elderly patients who were hospitalised in the Geriatric Department of the First Affiliated Hospital with Nanjing Medical University (Nanjing, China). A total of 4,066 elderly patients, who were admitted between January and March in 2019 and 2020 and then hospitalised for >48 h were selected. Among them, 3,073 (75.58%) patients hospitalised from January 2019 to March 2019 were allocated into the non-intervention group, whereas the remaining 933 (24.42%) patients hospitalised from January 2020 to March 2020 after the COVID-19 outbreak were allocated into the intervention group. Following multivariate logistic regression analysis, the risk of nosocomial infections was found to be lower in the intervention group compared with that in the non-intervention group. After age stratification and adjustment for sex, chronic disease, presence of malignant tumour and trauma, both inverse probability treatment weighting and standardised mortality ratio revealed a lower risk of nosocomial infections in the intervention group compared with that in the non-intervention group. To rule out interference caused by changes in the community floating population and social environment during this 1-year study, 93 long-stay patients in stable condition were selected as a subgroup based on 4,066 patients. The so-called floating population refers to patients who have been in hospital for <2 years. Patients aged ≥65 years were included in the geriatrics program. The incidence of nosocomial infections during the epidemic prevention and control period (24 January 2020 to 24 March 2020) and the previous period of hospitalisation (24 January 2019 to 24 March 2019) was also analysed. In the subgroup analysis, a multivariate analysis was also performed on 93 elderly patients who experienced long-term hospitalisation. The risk of nosocomial and pulmonary infections was found to be lower in the intervention group compared with that in the non-intervention group. During the pandemic, the geriatric department took active preventative measures. However, whether these measures can be normalised to reduce the risk of nosocomial infections among elderly inpatients remain unclear. In addition, the present study found that the use of an indwelling gastric tube is an independent risk factor of nosocomial pulmonary infection in elderly inpatients. However, nutritional interventions are indispensable for the long-term wellbeing of patients, especially for those with dysphagia in whom an indwelling gastric tube is the most viable method of providing enteral nutrition. To conclude, the present retrospective analysis of the selected cases showed that enacting preventative and control measures resulted in the effective control of the incidence of nosocomial infections.

20.
Front Public Health ; 10: 765581, 2022.
Article in English | MEDLINE | ID: covidwho-1952750

ABSTRACT

The COVID-19 outbreak triggered a massive spread of unverified news on social media and has become a source of rumors. This paper studies the impact of a virtual rumor control center (RCC) on Weibo user behavior. The collected COVID-19 breaking news stories were divided into positive, negative, and neutral categories, while the moderating effect model was used to analyze the influence of anti-rumor on user behavior (forwarding, liking, and commenting). Our research found that rumor refuting does not directly affect user behavior but does have an indirect moderating effect. Rumor refuting has a profound impact on user forwarding behavior in cases of positive and negative news. Specifically, when the epidemic becomes more serious, the role of rumor refuting becomes critical, and vice versa. Refuting rumors reduces user willingness to forward positive or negative news, with more impact on negative news. Time lag analysis shows a significant moderation of unverified news within 72 h of refuting rumors but indicated an apparent weakening trend over time. Furthermore, we discovered non-linear feature and counter-cyclical phenomena in the moderating effect of rumor refutation.


Subject(s)
COVID-19 , Social Media , Humans , Social Networking
SELECTION OF CITATIONS
SEARCH DETAIL